

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

An Investigation of ^{13}C -NMR Spectra of Some Intramolecular Hydrogen Bonded and Non-Bonded Azo Dyes

Hasan Kocaokutgen^a; Ismail E. Gümrükçüoglu^a

^a Department of Chemistry, Ondokuz Mayis University,

To cite this Article Kocaokutgen, Hasan and Gümrükçüoglu, Ismail E.(1996) 'An Investigation of ^{13}C -NMR Spectra of Some Intramolecular Hydrogen Bonded and Non-Bonded Azo Dyes', *Spectroscopy Letters*, 29: 1, 185 — 192

To link to this Article: DOI: 10.1080/00387019608001594

URL: <http://dx.doi.org/10.1080/00387019608001594>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AN INVESTIGATION OF ^{13}C -NMR SPECTRA OF SOME
INTRAMOLECULAR HYDROGEN BONDED AND
NON-BONDED AZO DYES

Keywords: Substituted azobenzenes, ^{13}C -NMR, Chemical shift assignment, Intramolecular hydrogen bonding, substituted groups.

Hasan KOCAOKUTGEN* and İsmail E. GÜMRÜKÇÜOĞLU

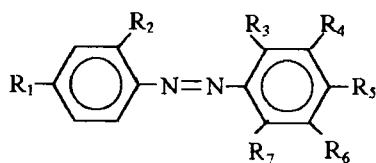
Ondokuz Mayıs University, Department of Chemistry,
Kurupelit-SAMSUN/TÜRKİYE

ABSTRACT : The ^{13}C -NMR spectra of the azo dyes which were synthesized by reacting substituted benzenediazonium chloride with derivatives of some phenol have been measured. The spectral data of these compounds were described considering intramolecular hydrogen bond and not. The chemical shift assignments were made regarding substituent effects.

* Author to whom correspondence should be directed

INTRODUCTION

Substituted azobenzenes derivatives have been the most widely used class of dyes due to their versatile features in various fields, such as dyeing textile fiber, bio-medical studies, advanced applications in organic synthesis and high technology areas¹⁻⁴. NMR spectroscopy is an extremely important tool in structural elucidation and in same physical property studies of organic, inorganic and organometallic compounds. It should therefore, not be surprising that NMR spectroscopy may also successfully be used in the analysis of synthetic dyes. Fedorox has summarised ¹³C NMR results, with the emphasis on azo dyes⁵. The spectroscopic data analysis of azo dyes has been quite difficult and although a few ¹³C NMR spectra has been described so far, the chemical shift assignment of carbon and the effect of substituted groups reported are very little⁶. The interpretation of the spectra necessitates a correct assignment of the signals in the spectra of the intramolecular hydrogen bonded and non-bonded azo dyes.


In this study, we report the ¹³C-NMR chemical shift values of the newly synthesized azo dyes. The influence of the substituents and intramolecular hydrogen bonds on the spectra of the dyes were also described.

EXPERIMENTAL

The dyes 1-13, were prepared by reacting substituted benzene diazonium salts with various phenols as described before⁷⁻⁹.

The ¹³C-NMR spectra were recorded on a BRUKER AC 200 Fourier Transform Spectrometer operating at 50.323 MHz. The chemical shift in CDCl₃ or DMSO-d₆ as solvent were referenced directly to TMS and reported in ppm to low field of reference. The measurement conditions

TABLE 1. The structures of the azo dyes

	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇
1	NO ₂	H	OH	H	H	s-Bu	H
2	NO ₂	Cl	H	H	OH	H	H
3	NO ₂	Cl	H	Bu ^t	OH	H	H
4	NO ₂	Cl	OH	H	H	s-Bu	H
5	H	Cl	H	H	OH	H	H
6	H	Cl	H	CH ₃	OH	CH ₃	H
7	H	Cl	H	i-pro	OH	H	CH ₃
8	H	Cl	OH	H	H	Bu ^t	H
9	H	Cl	OH	Bu ^t	H	CH ₃	H
10	H	H	H	H	OH	H	H
11	H	H	H	CH ₃	OH	CH ₃	H
12	H	H	OH	H	H	Bu ^t	H
13	H	H	OH	Bu ^t	H	OCH ₃	H

i-pro : izo-propyl s-Bu : Sec-butyl

were as follows : pulse width (pw) : 2 μ s; acquisition time (AQ) : 2.621 s for 128 K data table with a spectral width (sw) of 250 ppm. Spectra were recorded with broad-bond decoupling and a digital resolutions of 0.381 Hz/pt.

RESULTS AND DISCUSSION

The azo dyes synthesized and the ¹³C chemical shift data of them are shown in Table I and II, respectively of which the results of the dyes 10, and 12 have already published before⁹ and included here the discussion by comparing with the other dyes.

TABLE 2. The ^{13}C -NMR data of the dyes

No	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12
1*	150.97	122.00	125.02	148.33	125.02	122.00	137.48	153.94	118.08	134.34	139.68	131.66
2**	151.85	118.56	125.77	147.86	123.46	133.12	145.86	126.27	116.40	163.02	116.40	126.27
3**	151.94	118.56	125.80	147.73	123.28	133.00	145.70	123.46	136.69	161.88	117.16	123.96
4*	150.08	118.54	125.94	148.24	122.71	133.72	138.23	151.63	117.81	135.27	139.86	132.03
5*	148.70	117.60	131.10	134.50	130.67	127.30	147.18	125.56	115.92	158.88	115.92	125.56
6**	148.27	117.49	131.38	133.11	130.56	127.93	145.32	125.06	123.70	157.69	123.70	125.06
7**	148.53	117.72	130.99	133.23	130.44	127.86	143.52	116.68	132.94	159.13	113.90	138.73
8**	146.46	117.59	132.08	133.08	130.56	128.19	137.52	151.26	117.98	132.56	142.53	124.16
9*	146.48	117.35	131.35	133.60	130.42	127.91	137.77	150.64	138.63	127.47	132.69	131.25
10**	152.16	122.17	129.22	130.36	129.22	122.17	145.34	124.93	115.97	161.05	115.97	124.93
11*	152.21	122.38	129.04	130.27	129.04	122.38	128.26	124.13	123.93	155.11	123.93	124.13
12*	150.68	122.15	129.32	130.87	129.32	122.15	136.89	150.40	117.67	130.95	142.88	129.71
13*	151.99	121.97	129.33	130.66	129.33	121.97	137.00	150.37	140.11	110.57	148.20	120.72

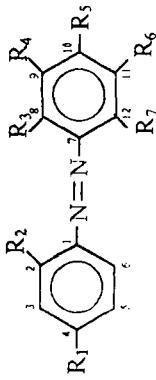

* CDCl_3 ** DMSO-d_6

TABLE 3. The ^{13}C -NMR data of substituted groups

No	Group	C-13	C-14	C-15	C-16
1	$\text{R}_6 : \text{CH}_3\text{CHCH}_2\text{CH}_3$	21.61	40.44	30.95	12.00
3	$\text{R}_4 : \text{C}(\text{CH}_3)_3$	34.46	29.05	-	-
4	$\text{R}_6 : \text{CH}_3\text{CHCH}_2\text{CH}_3$	21.54	40.46	30.94	12.00
6	R_4 and $\text{R}_6 : \text{CH}_3$	16.70	-	-	-
7	R_4 and $\text{R}_7 : \text{CH}_3\text{CHCH}_3, \text{CH}_3$	22.21	26.45	22.21	16.89
8	$\text{R}_6 : \text{C}(\text{CH}_3)_3$	33.83	31.01	-	-
9	R_4 and $\text{R}_6 : \text{C}(\text{CH}_3)_3, \text{CH}_3$	35.08	29.45	20.63	-
11	R_4 and $\text{R}_6 : \text{CH}_3$	16.05	-	-	-
12	$\text{R}_6 : \text{C}(\text{CH}_3)_3$	34.12	31.38	-	-
13	R_4 and $\text{R}_6 : \text{C}(\text{CH}_3)_3, \text{OCH}_3$	35.24	29.44	55.75	-

Considering all dyes synthesized, it is clearly seen that ortho-hydroxyazobenzene derivatives 1, 4, 8, 9, 12, and 13 contain intramolecular hydrogen bonds and exist in the azo form, in addition para-hydroxyazobenzene derivatives 2, 3, 5, 6, 7, 10, and 11 exist exclusively in the azo form and do not form any intramolecular hydrogen bond¹⁰⁻¹². The signals of C-8 atoms of the dyes 1, 4, 8, 9, 12, and 13 containing intramolecular hydrogen bond, have the effect of deshielding relative to the other dyes 2, 3, 5, 6, 7, 10, 11 and deshield approximately by 25 ppm (Table II). As can be observed from the values of C-10 atoms of the dyes 2, 3, 5, 6, 7, 10, and 11 which have para-hydroxyl groups, that the chemical shift values are between 155.11 ppm and 163.02 ppm, and it is in their region of 135.27 ppm and 110.57 ppm for the other dyes depending on the chemical environment of the carbon¹⁰. When the chemical shift values of C-1 atoms attached to nitrogen are between 148.27 ppm and 152.21 ppm, the signals of C-7 atoms attached to the other nitrogen appear at 128.26-147.18 ppm.

Figure 1. The ^{13}C -NMR spectrum of the dye, 1

In investigating the dyes of aniline, 2-chloroaniline, and 2-chloro-4-nitroaniline derivatives, a harmonious in the chemical shift values of C-1, C-2, C-3, C-4, C-5, and C-6 atoms for the dyes of derivatives of each series has been detected. For instance, looking at the chemical shift values of C-1, C-2, C-3, C-4, C-5, and C-6 atoms of the dyes 10, 11, 12, and 13 (Table II), close similarities among all the values are obvious. This is also the case for the dyes 5, 6, 7, 8, and 9 which are the derivatives of 2-chloroaniline. Chemical shift values in the range 122.38 ppm and 121.97 ppm from attaching chloride to C-2 atom of aniline derivatives were shielded downward to the 117.72 ppm- 117.35 ppm internal. Attaching the nitro group to C-4 atom of the 2-chloroaniline shielded by 1 ppm like the dyes 2, 3, and 4. As can be seen the dyes 1,2,3, and 4 having nitro groups, C-4 atoms were deshielded by approximately 17 ppm and 15 ppm relative to the aniline and 2-chloroaniline derivatives , respectively. In

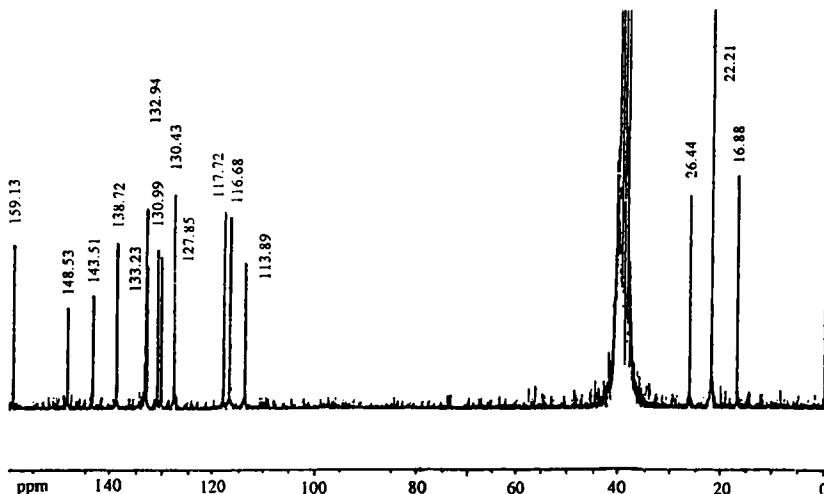


Figure 2. The ^{13}C -NMR spectrum of the dye, 7

examining the dyes groups like 2, 5, 10 or 1, 4 or 6, 11 or 8, 12 being analogous to phenol derivatives, there seems them to have similar values of C-7, C-8, C-9, C-10, C-11, and C-12. Figures I and II show the ^{13}C -NMR spectra of the dyes 1 and 7, respectively one of which is intramolecular hydrogen bonded and the other non-bonded.

ACKNOWLEDGEMENT

The authors are indebted to the TÜBİTAK for financial support under the project number of TBAG-1139 to this work.

REFERENCES

1. Catino S. C., Farris R. E. *Azo Dyes*. In : Grayson M. ed. *Concise Encyclopedia of Chemical Technology*. New York: John Wiley & Sons, 1985: 142-144.
2. Venkataraman K. *The Chemistry of Synthetic Dyes*, (Vol. 3) New-York and London: Academic Press, 1970.

3. Peters A. T., Freeman H. S. *Colour Chemistry The Design and Synthesis of Organic Dyes and Pigments*. London: Elsevier, 1991.
4. Tanaka K., Matsuo K., Nakanishi A., Jo M., Shiota H., Yamaguchi M., Yoshino S., Kawaguchi K. *Syntheses and Antimicrobial Activities of Five-Membered Heterocycles Having a Phenylazo Substituent*. *Chem. Phar. Bull.* 1984; 32: 3291-3298.
5. Lycka A., Jirman J. *Two-Dimensional NMR Spectroscopy in The Analysis of Organic Dyes*. In: Peters A.T., Freeman H.S. ed. *Colour Chemistry The Design and Synthesis of Organic Dyes and Pigments*. London: Elsevier, 1991(3rd ed.): 225-252.
6. Breitmaier E., Voelter W. *¹³C NMR Spectroscopy*, 2nd ed. New York, Verlag Chemie, 1978.
7. Saunders K.H., Allen R.L.M. *Aromatic Diazo Compounds*, 3rd ed. London: Edward Arnold, 1985.
8. Kocaokutgen H., Gümrükçüoğlu, İ.E. *Synthesis and Spectral Characterization of Some Novel Azo Dyes containing Tert-butyl Groups*. *Doğa Tr. J. Chem.* 1995 (in press).
9. Zollinger H. *Azo and Diazo Chemistry*, New York and London : Interscience, 1961.
10. Lycka A., Snobl D. *¹³C NMR Spectra of Non - Labelled and ¹⁵ N-Mono-Labelled Azo Dyes*. *Org. Magn. Reson.* 1981; 15: 390-393.
11. Reeves L.W. *Nuclear Shielding Parameters for Protons in Strong Hydrogen Bonds*. *Can. J. Chem.* 1960; 38: 748.
12. Krueger P.J. *Basicity, Hydrogen Bonding and Complex Formation Involving Hydrazo, Azo and Azoxy Groups*. In: Patai S. ed. *The Chemistry of The Hydrazo, Azo and Azoxy Groups. Part 1.*, London: John Wiley & Sons, 1975: 198-207.

Received: July 17, 1995

Accepted: August 25, 1995